Growing fuzzy inference neural network applied to the NN3 neural forecasting competition
نویسنده
چکیده
Growing fuzzy inference neural system (GFINN) is a fuzzy–neural network model. Its functionality can be expressed in a form of fuzzy if–then rules. The skill of the GFINN model to grow allows it to change its size and structure according to the training data. The resulting structure allows for a simple input features selection — not all input features have to be used in every fuzzy rule. The new algorithm for the computation of output weights runs much faster than least mean squares estimate, while the experiments performed in past show nearly identical performace of both methods. Furthermore, the new training method guarantees the output weights to remain inside the output values interval. This makes the extracted rules reasonable, unlike with least mean squares estimate. This text describes the GFINN model and its application to the NN3 neural forecasting competition.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملForecasting Time Series by SOFNN with Reinforcement Learning
A self-organized fuzzy neural network (SOFNN) with a reinforcement learning algorithm called Stochastic Gradient Ascent (SGA) is proposed to forecast a set of 11 time series. The proposed system is confirmed to predict chaotic time series before, and is applied to predict each/every time series in NN3 forecasting competition modifying parameters of threshold of fuzzy neurons only. The training ...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملForecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007